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Abstract. An alternate derivation of Plefka’s method is presented which is obtained from
minimizing Gibbs energy. It is shown that this method can be rederived using a perturbation
expansion of Kullback–Leibler divergence, the latter having a nice information geometric
interpretation.

1. Introduction

Plefka [2] suggested an alternative derivation of Thouless, Anderson and Palmer (TAP)
equations for the Sherrington–Kirkpatrick (SK) [3] model. He showed that a power expansion
of the Gibbs energy up to second order in exchange couplings for the SK model yields the
TAP equations. This method is an interesting alternative to the diagram expansion method
presented in [4]. In this paper we study Plefka’s method and establish that this method can also
be derived from a minimization framework, and also from an information geometric viewpoint.

2. An alternate derivation of Plefka’s mean-field theory

Plefka’s method was initially presented for the SK model whose Hamiltonian, described byN

Ising spins(Si = ±1), is given by

H = − 1
2

∑
i 6=j

Jij SiSj . (1)

The interactions,Jij , are identical and independently distributed random variables given by
a Gaussian distribution. Plefka’s method actually holds for a general Hamiltonian,H. We
will thus try to study a system withN interacting spins, whose Hamiltonian,H is a general
function ofS.

Let γ be a real parameter taking values from 0 to 1. It is used to define theγ -dependent
Hamiltonian,γH. The probability distributions associated with the HamiltoniansH andγH
are given by

pγ = e−βγH−φγ p = e−βH−φ (2)

whereφγ = ln
∑
{Si } e

−βγH, φ = ln
∑
{Si } e

−βH andβ = (KT )−1. At γ = 1 it is noted that
p = pγ . We introduce a set of external magnetic fields{hexi } to rewriteφγ as

φγ = ln
∑
{Si }

e−β(γH−
∑

i h
ex
i Si+

∑
i h

ex
i Si )+φ̃γ−φ̃γ (3)
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whereφ̃γ = ln
∑
{Si } e

−β(γH−∑i h
ex
i Si ). We introduce one more HamiltoniañH and distribution

p̃γ ,

H̃ = γH−
∑
i

hexi Si p̃γ = e−βH̃−φ̃γ . (4)

Applying the convex inequality〈ex〉 > e〈x〉 to equation (3), and using equation (4) the following
inequality is obtained:

−φγ 6 −φ̃γ + β
∑
i

hexi ui (5)

where

ui = 〈Si〉p̃γ =
1

β

∂φ̃γ

∂hexi
. (6)

The inequality yields an upper boundG on−φγ . The upper bound is tight if we set

hexi = 0 ∀i. (7)

This solution in no way helps us in estimating the means,ui , of the system. It is thus appropriate
to consider the right-hand side of inequality (5) as a function of{ui}. This is achieved by treating
hexi as dependent on{ui} via the following assumption.

Assumption. For a given{ui}, γ , β one can solve for{hexi } in (6) uniquely.

We can thus define

βG(γ, β, {ui}) = −φ̃γ + β
∑
i

hexi ui (8)

whereG is the Gibbs free energy for the HamiltoniañH. Relation (5) can be restated as

−φγ 6 βG(γ, β, {ui}). (9)

At a givenβ andγ tightening the bound corresponds to minimization of the convex function
G with respect to{ui}. In fact, at the minimum point the bound is tight and exact equality is
attained. The above statements are established by examining the stationarity conditions

∂G

∂ui
= 0. (10)

Since ∂G
∂ui
= hexi , this equation is a restatement of (7); and using (8), (9) we obtain

−φγ = min
{ui }

βG(γ, β, {ui}). (11)

We establish the convexity ofG with respect to{ui} by showing that the Hessian is positive
definite. LetH denote the Hessian ofG:

Hij = ∂2G

∂ui∂uj
. (12)

Noting the fact thatHij = ∂hexi
∂uj

and differentiating (6) with respect to{ui} we obtain

I = BH (13)

where

Bij = 1

β2

∂2φ̃γ

∂hexj ∂h
ex
i

= 1

β

∂ui

∂hexj
= [〈SiSj 〉 − 〈Si〉〈Sj 〉]. (14)

Being a covariance matrixB is a positive semidefinite matrix. Equation (13) ensures that both
B andH are nonsingular. HenceH is a positive definite matrix; clearly then,G is convex.
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The use of (10) as the underlying mean-field equations, so as to satisfy (7), andβG as an
approximation of−φγ are the basic aspects of Plefka’s theory. The Legendre transformation
technique employed in [2] elegantly combines the invertibility assumption, with the fact that
∂G
∂ui
= hexi and ∂φ̃γ

∂hexi
= βui . But in the Legendre transformation approach, the need for defining

G arises because of convenience in manipulation, whereas in our derivationG appears much
more naturally. More importantly our analysis establishes relation (9), which is not at all
obvious from Plefka’s derivation. Consequently, (10) comes from a variational argument (the
convexity ofG lends excellent support to this), in our derivation. Plefka’s method can thus
be seen as implementing minimization of Gibbs energy, over the set of all systems whose
Hamiltonians are parametrized by (4).

Unfortunately the intractability in inverting (6) forγ 6= 0, makes it impossible to arrive at
an algebraic expression forGatγ = 1. To circumvent this problem an approximate description
of G is built, by using Taylor series expansion aroundγ = 0. Suppressing the dependence of
β, we obtain

G̃M(γ, {ui}) = G({ui}, 0) +
M∑
k=1

γ k

k!

∂kG

∂γ k

∣∣∣∣
γ=0

. (15)

The requirement mentioned in (7) is approximately enforced by

hexi =
∂G

∂ui
≈ ∂G̃M

∂ui
= 0. (16)

This equation is used to set up the fixed-point equations. ForM = 1 we obtain the standard
mean-field equations, while the TAP equations, for the SK model, are obtained by setting
M = 2. Henceforth we will refer to them as the mean-field equations.

Apart from establishing a minimization framework the relation (9) can also be interpreted
using the Kullback–Leibler (KL) divergence between two distributionsp andq, defined by

D(p, q) =
∑
{Si }

p ln
p

q
(17)

whereD is non-negative, andD(p, q) = 0 if and only ifp = q. Non-negativity ofD(p̃γ , pγ )
can be used to give an alternative route for arriving at the inequality (9). Minimizing this
divergence with respect to the variational parameters,{ui}, is equivalent to minimizing the
convex functionG. At the minimum point the divergence is zero. This observation leads to
an information geometric interpretation presented in the next section.

3. A geometric argument

Mean-field theory can also be described from an information geometric viewpoint, developed
by Amari et al [1]. This geometric interpretation suggests that Plefka’s method can also be
derived from a Taylor series approximation of the divergence measure.

Let M = {q({Si})} be the set of all probability distributions, over the state spaceS
consisting of 2N states of ES. Since

∑
{Si } q({Si}) = 1 and 0 < q < 1, M can be

thought of as a manifold of dimension 2N − 1 each of whose points represents a Boltzmann
distributionq({Si}) = e−βE−φ, φ = ln

∑
{Si } e

−βE . Consider the energy function in (4) and
the corresponding probability distribution defined in (2). Let us define the following subsets
ofM: A(γ ) = {p̃γ |γ }, B({ui}) = {p̃γ |〈Si〉p̃γ = ui}. A(γ ) is a submanifold with a fixedγ
which is parametrized by{hexi }. A(0) consists of points that correspond to distributions of the
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A(γ)

A(0)
p
0

p
γ

∼

∼

γ
p

B(u) 

Figure 1. An illustration ofD(p̃γ , pγ ) = D(p̃0, pγ ) − D(p̃0, p̃γ ). The first-order approach
corresponds to approximating the divergence betweenpγ andp̃γ by that betweenpγ andp̃0. The
divergence betweeñpγ andp̃0 consists of second- and higher-order terms inγ . Subtracting these
terms from the divergence betweenpγ and p̃0 yields a better approximation of the divergence
betweenpγ andp̃γ . This corresponds to Plefka’s approach.

form

p̃0 =
N∏
i=1

eθiSi

1 + eθi

also known as factorial distributions; henceforth we will refer toA(0) as the factorized
submanifold. B({ui}) is also a submanifold where the mean vector,{ui}, is fixed; B({ui})
is a one-dimensional submanifold parametrized byγ . By the invertibilty assumption we can
say that at each point ofA(γ ) there exists a unique{ui} such thatB({ui}) passes through that
point. In fact they intersect one another orthogonally; see (13) and [1].B plays the role of
Riemannian metric on the manifoldM (see [1] for details). Let us now consider the following
problem: compute

〈Si〉pγ =
∑
ES
Sipγ

for a fixedγ wherepγ is as in (2).
The divergence measure in the manifoldM is given by the KL divergence defined

in (17) [1]. Select any point̃pγ in A(γ ). Then

D(p̃γ , pγ ) =
∑
{Si }

p̃γ ln
p̃γ

pγ
= φγ − φ̃γ + β

∑
i

hexi ui . (18)

We immediately obtain the relation (5). Minimizing this divergence with respect to{hexi }
trivially finds the solution{hexi = 0}. Since the quantity of interest is{ui} and the above
solution in no way helps in evaluating it we try to expressD in (18) as a function of{ui}. As
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discussed before, there exists a unique submanifoldB({ui}) passing through the selected point
p̃γ which helps in expressingD as a function of{ui}:

D(p̃γ , pγ ) = βG({ui}, γ ) + φγ (19)

whereG is as defined in (8). The mean-field criterion can now be stated as

min
{ui }

D(p̃γ , pγ ). (20)

This minimization leads us to solving the equations (10). Since we cannot express∂G
∂ui

as an
explicit function of{ui}, as discussed before, we resort to an approximate description ofG as a
function of{ui} using Taylor series expansion. For an explicit description ofG we turn to the
factorized submanifold,A(0), where we have an algebraic expression for{hexi } as a function
of {ui}. Let p̃0 be the unique point,A(0)

⋂
B({ui}). The following expressions for distances

can be easily verified:

D(p̃0, p̃γ ) = βG̃1− βG D(p̃0, pγ ) = βG̃1 + φγ (21)

whereG̃1 is obtained by settingM = 1 in (15). It directly follows from (19) and (21) that

D(p̃0, pγ ) = D(p̃0, p̃γ ) +D(p̃γ , pγ ). (22)

This Pythagorean relationship is used to obtain an alternate definition ofD(p̃γ , pγ ), and hence
an alternate mean-field criterion,

min
{ui }

D(p̃γ , pγ ) = min
{ui }
{D(p̃0, pγ )−D(p̃0, p̃γ )}. (23)

D(p̃0, p̃γ ) is still intractable, but we can build an approximate description in terms of{ui},
andγ , by Taylor series expansion inγ aroundγ = 0:

D(p̃0, p̃γ ) = D(p̃0, p̃0) + γ
∂D

∂γ

∣∣∣∣
γ=0

+
M∑
k=2

γ k

k!

∂kD

∂γ k

∣∣∣∣
γ=0

. (24)

The first two terms on the right-hand side are zero while the remaining terms are the negative
partial derivatives ofG with respect toγ atγ = 0, which are all tractable. Note that since our
operation is restricted toB({ui}), {ui} is fixed.

Hence the mean-field criterion, (23), can be restated as

min
{ui }

D(p̃γ , pγ ) ≈ min
{ui }

βG̃M({ui}, γ ) + φγ (25)

where G̃M is defined in (15). We obtain our mean-field equations, (16), by solving for
stationarity conditions.

It is easy to see from (21), (22) that whenpγ is not factorial, min{ui }D(p̃0, pγ ) is positive,
and hence cannot yield an arbitrary close approximation toφ. It is also straightforward to
establish that the objective functionG is overestimated bỹG1. Note using from (19), (21) and
the non-negativity ofD that

−φγ 6 βG({ui}, γ ) 6 βG̃1({ui}, γ ).
These interesting inequalities are, again, not at all obvious in Plefka’s derivation.

Thus Plefka’s method can also be derived from a perturbation expansion of the KL
divergence. The derivation of the basic ideas of mean-field theory performed in this section is
an elegant geometric alternative to the algebraic derivation presented in the previous section.
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4. Discussion

In this paper we have studied Plefka’s method and have established that it can also be derived
by minimizing the Gibbs energy. It is also estabished that this method can be obtained
from a perturbation expansion of KL divergence, which yields an information geometric
interpretation.
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